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SUMMARY

Environmental health research considers the relationship between exposures to environmental contaminants and
particular health endpoints. Due to spatial structure associated with either exposures or outcomes, spatial
modeling is making rapid inroads in environmental health. Our focus in this paper is on approximately optimal
spatial design in the case of one-time sampling at a large number of spatial locations. If we plan to use spatial
processes in building models to analyze the data, it seems equally appropriate to use such models in developing
the sampling design.
For a given study region, our contribution is to develop an approximately optimal sampling strategy to learn

about the spatial distribution of a contaminant across the region. Optimal design, working with a continuum of
locations, is intractable so, as is customary, we presume that the region has been gridded to high resolution. The
criteria we focus on, are developed from the Fisher information matrix with the goal of learning not only about the
regression structure in the model but also about the dependence structure.
Under a criterion that attempts to maximize information gain, we consider three strategies to develop an

approximately optimal design—sequential sampling, block sampling, and stochastic search. We also discuss
utility-based modification of these strategies to achieve oversampling with regard to specified objectives. We
present some theoretical and empirical properties and relationships among these strategies and provide an
illustrative implementation for a simulated dataset. We also describe a real application in the context of the toxics
release inventory (TRI). Copyright # 2005 John Wiley & Sons, Ltd.

key words: block sampling; entropy; Fisher information; Gaussian process; sequential sampling; stochastic
search

1. INTRODUCTION

Environmental health research considers the relationship between exposure to environmental

contaminants and particular health endpoints. Many environmental health issues are characterized

by spatial structure in either the contaminant surfaces or the pattern of observed cases. Thus, spatial

modeling is making rapid inroads in environmental health. For exposure, which is our focus, models
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that explicitly include spatial structure provide better explanation of contaminant surfaces both with

regard to estimation of levels and the uncertainty in this estimation.

By definition, if exposure surfaces are envisioned as conceptually measurable at every

(point) location in a study region, then such surfaces are inherently spatial in nature. Anticipating

spatial association in contaminant levels, with an uncountable collection of locations, we naturally

turn to point-referenced association models, that is, spatial process models. In this paper, our

attention is to a particular aspect of sampling design: how shall we choose locations to sample

exposure levels (possibly ambient or deposition) that are anticipated to be essentially static?

For example, how shall we sample individuals within a region to measure contaminant levels in

the blood? Or, how shall we sample locations to learn about ambient levels of air toxics or

perhaps arsenic levels in the water table? We are focusing on one-time sampling at a large

number of locations rather than designing long-term typically sparse monitoring networks. Thus,

we are not considering the costs for installing, operating, and maintaining a network but rather

the cost of collecting a single observation. If we plan to use spatial processes in building models

to analyze such data, it seems equally appropriate to use such models in developing the sampling

design.

Many GIS-based projects have been successful in examining the spatial nature of environmental

health research and policy practice addressing toxic exposure, vector borne disease, health information

access, and the built environment. See, for example, Miranda et al. (2002), Dolinoy and Miranda

(2004), and further references therein. However, data collection exercises typically continue to follow

a traditional path (simple random sampling or perhaps, stratified sampling) that fails to take advantage

of significant advances in modeling for spatial data. In this paper, we consider sampling strategies for

collecting environmental and biological samples that attempt to achieve approximately optimal spatial

design performance using criteria we will describe below.

2. BACKGROUND AND LITERATURE REVIEW

A brief review of the history of spatial modeling for environmental health may be useful. Two broad

paths have been followed. The first views the surface as a random realization of a spatial process above

two-dimensional space. Measurements are taken at point-referenced (geo-coded) spatial locations.

Inference involves fitting an explanatory process model using these measurements. In some cases,

exposure levels are essentially stable and static modeling based upon single measurements at

individual locations is the objective. In other cases, the locations are monitoring stations whence

data collection is dynamic and a temporal component is added to the modeling to capture evolution of

the contaminant surface over time. The literature on spatial and spatio-temporal process modeling in

environmental health is substantial. Noteworthy examples for the static case include Le and Zidek

(1992), Brown et al. (1994), Shaddick and Wakefield (2002), and Schmidt and Gelfand (2003).

Examples in the dynamic setting include Guttorp et al. (1994), Huerta et al. (2004), and Sahu et al.

(2005). Gelfand et al. (2005) provide a general dynamic modeling development for univariate and

multivariate spatial data settings.

The second path has focused on areal partitions of the study region into, for example, census units,

zip codes, or counties. Typically, counts of some adverse health outcome are aggregated to these units

(usually for purposes of confidentiality). Environmental risk factors are supplied for these areal units

to explain the counts. Spatially-structured random effects are introduced to provide spatial smoothing

of the counts. Work here dates to Clayton and Kaldor (1987). See also Bernardinelli and Montomoli
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(1992), Knorr-Held (2002), and Zhu et al. (2003). More flexible regression settings are discussed in

Assunção (2003).

With regard to sampling for point-referenced data, we first note that optimal experimental design

has a long statistical history. See the book of Pukelsheim (1993) for a review. The dominant path has

focused on design for independent data collection. There is history for the case of correlated data

dating to 1966 (Sacks and Ylvisaker, 1966). More recently, there has been attention directed at

accommodating data with structured dependence. For spatial data, this has been expressed through

random fields. See the review paper of Fedorov (1996) and the book of Müller (2001). Generally,

designs are classified as either probability or model-based. The former includes widely-used simple

random sampling without replacement. They tend to be robust in that they make no population

assumptions regarding, for example, mean structure or dependence structure.

Model-based design has followed a regression model path or a random field model path. Under

regression modeling with independent data, optimality is defined with regard to efficiency of the

estimates of the regression coefficients. An optimization criterion that is a function of the design

matrix is specified and then the ‘best’ design optimizes this criterion over all design matrices. Again,

see Pukelsheim (1993) or Müller (2001) for details. This theory is not directly extensible to spatial

design but approximately optimal solutions based upon information-theoretic measures have emerged,

most notably the recursion in Brimkulov et al. (1986). (See Fedorov, 1996, in this regard.) This

recursion is elaborated in Section 4 below. Its focus is exclusively on gaining information regarding

the regression structure or model mean. A different type of approximation in the context of anisotropic

dependence is proposed in recent work of Arbia and Lafratta (2002).

Model-based design, motivated by a random field specification, has been strongly advocated in

Le and Zidek (1992) and Zidek et al. (2000) as well as references therein. The proposal is an entropy-

based design where the selection of the next site to be added will be the one with the largest entropy

where entropy can be viewed as uncertainty. Under a Gaussian field assumption, the criterion that

emerges is the conditional variance of an observation at a new location, given the locations already

selected. (This conditional variance depends only upon the previously selected locations but not on the

data already collected at those locations.) The site with the most uncertainty is the one with the largest

conditional variance given the selected sites. Extension to multivariate data at a location converts the

criterion to a conditional covariance matrix. This approach has no interest in mean structure. In fact,

quoting Zidek et al. (2000, p. 66), ‘[I]t avoids the need to specify objectives like parameter estimation.’

Implementations have been in the area of network monitoring design and thus, initial preparation and

operating costs are built into the adopted optimization criterion.

For a stationary Gaussian process with regression structure, two types of design questions can be

asked: what is the optimal sampling design for prediction at an unobserved set of locations? What is

the optimal sampling design for estimation of the parameters in the covariance function? Because

prediction is often the primary use for the model, the first question has received much attention. See,

for example, McBratney et al. (1981), Su and Cambanis (1993), Ritter (1996), and Zhu (2002). For the

latter question, with a constant mean, the classical procedure for estimating the covariance structure is

based upon the variogram. See, for example, Warrick and Myers (1987), Bogaert and Russo (1999),

and Müller and Zimmerman (1999). Very recent work by Zhu and Stein (2005) focuses on designs

based upon optimization using the likelihood. They suggest working with the Fisher information as a

measure in the form of a ratio of determinants and implement the optimization using a simulated

annealing algorithm.

Our approach is to also be model-based, working with the likelihood and focusing on the

information matrix as well. As noted above, our perspective is primarily pragmatic. We conceive a
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sampling setting in which we envision hundreds to thousand of sites being sampled and seek to make

the required sampling design easily understood and computationally manageable for the practitioners

who wish to implement it. We take as our design objectives learning about the mean structure as well

as the covariance function, noting that these objectives are usually in conflict. We also introduce a

further utility notion, providing an additional objective of sampling for say, large values (as with

contaminant surfaces). We consider the situation where we already have a partial sample and we wish

to augment the available data. After clarifying that obtaining the optimal solution is a combinatorially

complex computation problem, we consider three approaches toward achieving approximate

optimization—sequential selection, block selection, and tuned stochastic search.

The format of this paper is as follows. In Section 3, we review the issues in design development in

our setting. In Section 4, we formalize the information-based design criterion we work with. Section 5

proposes several approximately optimal sampling schemes, which can be implemented with the

criterion. Section 6 takes up information gain and connection to the entropy criterion. Section 7

considers comparison among the proposed sampling approaches. Section 8 looks at utility-based

modification of the design criterion. Section 9 offers a clarifying simulation illustration with Section

10 proposing an illustrative application. We conclude with a summary and suggestion of future

directions.

3. AN OVERVIEW OF THE ISSUES

Our objective is, for a given study region, to develop an approximately optimal sampling strategy to

learn about the spatial distribution of a contaminant across the region. Optimal design is intractable

working with the continuum of locations so, as is customary, we presume that the region has been

gridded (not necessarily a regular grid) to high resolution. For instance, in the context of sampling

childhood blood lead levels, the tax parcel level (equivalently the residential property on the parcel)

provides a natural discretization for sampling locations. In the ensuing development, we assume that

the parcels can be viewed as points in the region but, ultimately, with regard to design, we have only a

finite set of locations to select from.

We will work within the model-based framework for developing designs. The two types of criteria

we might consider are

(1) An information criterion that arises from the regression perspective (Section 4) but incorporates
learning about strength of spatial dependence as well as the regression component.

(2) An entropy criterion that focuses on uncertainty, yielding a conditional covariance. We emphasize
the information criterion in this paper for reasons we elaborate in Subsection 6.2. However, we
reserve Subsection 6.2 for some comparison.

We also note that in the multiparameter case (almost certainly the case of interest in applications),

both criteria emerge as matrices. So, to achieve a single number summary for a design, we will have to

summarize the resulting matrix either through a determinant or a (possibly weighted) trace.

We further assume that sampling is not ab initio or ‘preposterior.’ Rather, we assume that a

collection of n locations have already been sampled and that we have this data available to us. Such

collection may have been implemented by simple random sampling or perhaps, through ad hoc

methods. If not, how should the initial set of n points be selected? A convenient approach referred to as

space-filling designs, has been discussed in Nychka and Saltzman (1998). Such designs are based upon

geometric measures of how well a given set of points covers the study region, independent of the
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assumed covariance function. Such designs are not optimal but for an initial selection will work nearly

as well as optimal ones. In any event, as the number of sampling sites grows, effects of the initial

selection dissipate.

Based upon the data from these n sites, we can implement a preliminary fit of the model to obtain

preliminary parameter estimates. This is crucial since our design criteria emerge as parametric

functions. To evaluate a criterion for a given set of locations, we insert the parameter estimates into

the function as well as the locations. We recognize that this fails to account for the uncertainty in the

parameter estimation and that averaging over a suitable distribution for these parameters would

enable us to attach uncertainty to the criterion value. However, with interest in design rather than

inference (which would come later, after all of the data collection) we adopt the pragmatic ‘plug in’

approach. It is also computationally much more convenient and avoids the need for prior specification

at the time of sampling.

Thus the formal goal is, given the n locations already chosen and sampled, and given that we want

to choose m additional sites to sample, how shall we choose these m locations? Even given an explicit,

evaluable criterion and a finite collection of ‘N’ sites to choose from, obtaining the optimal choice is

not a tractable problem. In our setting it would be referred to as an ‘N � n choose m’ combinatorially

hard problem. So, we will have to consider approximate solutions to this problem. We examine three

strategies: (i) sequential selection, (ii) block selection; and (iii) stochastic search (including a modified

procedure).

4. THE INFORMATION CRITERION

In presenting the information criterion, rather than elaborating the formal optimal design machinery

(as described, for instance, in Pukelsheim (1993) or in Müller (2001)), we offer an intuitive

development built from the well-established Fisher information measure (see, e.g., Rao,1973; Cox

and Hinkley, 1974). The Fisher information arises from expectation of second derivatives of the log

likelihood. In the multiparameter case, it becomes the expectation of a matrix of mixed partial

derivatives (the Hessian) associated with the log likelihood. Under normality and a linear mean form

(in the coefficients) it emerges as a parametric function of the dependence structure. The matrix is

reduced to a scalar criterion either through the trace or determinant.

More precisely, suppose we consider the widely used spatial model

YðsiÞ ¼ �ðsiÞ þWðsiÞ þ �ðsiÞ; ð1Þ

where YðsiÞði ¼ 1; . . . ; nÞ are observations from a spatial process over a regionD inR2 and �ðsiÞ is the
linear mean form, XðsiÞTb.WðsiÞ are realizations from a mean 0 spatial process (typically a stationary

Gaussian process) and �ðsiÞ are realizations from a pure error process with mean 0 and variance �2.W
and � are independent. Written in vector form Y ¼ XbþW þ � where

W

�

� �
� N

0

0

� �
;

�2Rð�Þ 0

0 �2In

� �� �
:

Here, Rð�Þ is the correlation matrix associated with the n locations and � indexes the parameters of the

correlation function: for example, in the Matérn case (see, e.g., Banerjee et al., 2004), a smoothness

parameter and a range parameter.
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Let h ¼ ½�2; �; �2�T with �� ¼ �2Rð�Þ þ �2In. The log likelihood for ðb; hÞ is

‘ðb; hÞ ¼ � n

2
logð2�Þ � 1

2
logj��j � 1

2
ðY � XbÞT��1

� ðY � XbÞ:

The score function SðbÞ for b is

SðbÞ ¼ q‘ðb; hÞ
qb

¼ ðY � XbÞT��1
� X

and the associated Hessian is

H�‘ðb; hÞ ¼ q2‘ðb; hÞ
qbqbT

¼ �XT��1
� X:

So, the expected information matrix for b is IðbÞ ¼ �EðH�‘ðb; hÞÞ ¼ XT��1
� X:

The score function for the ith component of h is

q‘ðb; hÞ
q�i

¼ � 1

2
tr ��1

�

q��

q�i

� �
þ 1

2
ðY � XbÞT��1

�

q��

q�i
��1

� ðY � XbÞ

and the ijth entry of the associated Hessian matrix H�‘ðb; hÞ is

q‘ðb; hÞ
q�iq�j

¼ 1

2
tr ��1

�

q��

q�j
��1

�

q��

q�i
� ��1

�

q��

q�iq�j

� �
þ 1

2
ðY � XbÞT

�2��1
�

q��

q�j
��1

�

q��

q�i
��1

� þ ��1
�

q��

q�iq�j
��1

�

� �
ðY � XbÞ:

Hence, the ijth entry of the expected information matrix of h is

IðhÞij ¼ �E
q‘ðb; hÞ
q�iq�j

� �
¼ 1

2
tr ��1

�

q��

q�i
��1

�

q��

q�j

� �
: ð2Þ

Finally, the expected information matrix for ðb; hÞ has the block diagonal form

Iðb; hÞ ¼
XT��1

� X 0

0 1
2
tr ��1

�
q��

q�i
��1

�
q��

q�j

h i� � !
: ð3Þ

The block diagonal form in Equation (3) shows that b and h are orthogonal parameters (Cox and Reid,

1987). Informally, this means that an information criterion for design will ‘separate’ information

regarding b from information regarding h.

As it stands, Equation (3) is not a criterion. We need to reduce it to a univariate summary, which we

will then seek to maximize. Such optimization will correspond to maximizing information gain, as we
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detail in the next section. To achieve such reduction, we introduce a mapping from informa-

tion matrices to scalars. Customary approaches work with either trðIðb; hÞÞ or jIðb; hÞj. The

former emerges as trðXT��1
� XÞ þPi 1=2tr �

�1
� q��=q�i��1

� q��=q�i
� �

, the latter as jXT��1
� Xj�

jtr ��1
� q��=q�i��1

� q��=q�j
� �

2j. In either case, we see the separation mentioned above. The forms

also reveal that there can be tension between the component terms. That is, for a fixed m, the set of

points which maximizes our information gain about b will be different from that for h. Also, the trace

criterion suggests the possibility of weighted components (see Section 9).

Here, and in the sequel, we work with the trace of the information matrix to provide our criterion

rather than the determinant. The former is more intuitive in appreciating the components in the

information gain but requires standardization of the covariates since it is not independent of the scale

of the covariates (as the form XT��1
� X reveals). The latter avoids that problem since any scaling

emerges as a constant multiple of the determinant but at the expense of ease of interpretation.

Lastly, the response can be modeled on a suitably transformed scale in order to make the Gaussian

assumption more comfortable. Moreover, in what follows we work with the foregoing modeling

assumptions because they yield convenient computational expressions. We are not restricted to this

setting; with additional computational effort, we can accommodate non-Gaussian data, for example,

categorical outcomes or counts and/or non-linear means.

5. APPROACHES FOR APPROXIMATELY OPTIMAL DESIGN

To address the ‘N� n choosem’ combinatorially hard design problem noted at the end of Section 3, we

consider three approximate solutions, sequential selection, block selection, and (modified) stochastic

search. We consider them individually here though one could readily envision hybrid versions.

The sequential approach would require us to (i) identify, as the ðnþ 1Þst parcel, the one which

provides the maximum increase in information, (ii) sample it and add its data to the data already

collected, (iii) revise our current information, now based upon nþ 1 parcels, (iv) reorder the

remaining parcels, and (v) select the ðnþ 2Þnd. In fact, we can make a modest compromise (which

is appropriate for the way that the data collection would likely proceed) by sequentially ordering the

parcels but only assuming we have data about the underlying process model from the first n locations.

In this fashion, we can order the next m parcels to be selected. Then, if additional sampling were

sought after these new m locations are sampled, we would refit the model and revise our knowledge

about the model parameters in order to further sample.

The block selection approach would order all of the remaining parcels, given the n already selected

and then choose the m parcels with the m largest values of the criterion. Evidently, it offers

computational savings. Again, after these new m parcels were sampled, we would update our

parameter estimates before further sampling. Hence, either scheme provides an ordering to all of

the unsampled parcels. However, as we clarify below, these two approaches provide dramatically

different sampling designs and, though the sequential scheme emerges as generally preferable, we can

not assert that for any N; n; and m, it will always ensure greater information gain.

The third approach introduces stochasticity into the selection process. The most naive stochastic

selection algorithm would choose m points at random and would be simple random sampling.

Stochastic search is introduced if we make, say, b random selections, calculate the information gain for

each, and adopt the one yielding the largest gain. Of course, the choice of b is unclear. The larger b is

the closer we must get to the optimal design; however, computation cost increases linearly in b.

Refinement of the stochastic search is possible. For instance, consider any location s which was
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selected in at least one of the b searches. We can compute the average information gain for this

location over all of the searches in which it was included. We could then propose to sample the m

locations providing the largest average information gains.

We do note that, though it is not feasible to obtain the optimal design, the fact that we are dealing

with a finite set of locations N does enable us to compute an upper bound on the information gain, that

is, the information gain associated with sampling all remaining N � n locations. Evidently, the

information gain for choosing m points will tend to this bound as m increases. In fact, this raises an

important theoretical point that we discuss briefly in Section 7. What can we say about Iðb; hÞ as N
grows large? What can we say about Iðb; hÞ for fixed N asm increases? For the former, the key point is

whether information tends to 1 as N ! 1 or remains bounded. For the latter, typically the

information gain increases rapidly over smaller m with diminishing returns from there on. Hence,

the upper bound not only provides a measure of what proportion of potential information we will gain

from our sample of size m but also, if we see an ‘elbow’ in the information gain as a function of m, we

might conclude that there will be little value in spending for additional sampling.

6. INFORMATION GAIN AND COMPARISON TO THE ENTROPY CRITERION

6.1. Calculation of the information gain

Returning to the model in Equation (1), recall that we seek to learn about the importance of the

covariates (the Xs) in explaining the responses (the Ys) as well as the nature and strength of spatial

dependence. Assume the Gaussian process has stationary covariance function �2	ðs� s0;
Þ.1 Here,
we assume 	 � 0 and that 	 strictly decreases from 1 to 0 as 
 goes from 0 to1. A typical example is

the so-called exponential covariance function with 	 ¼ expð�
jjs� s0jjÞ. Also included are the

powered exponential and Matérn families of covariance functions of which the exponential is a special

case. We also assume, for the moment, that �2 ¼ 0, that is, there is no nugget.

It is a routine calculation to show that, if the Ys all have a common mean say �, up to a constant, the
information in the sample about � given spatial dependence measured by 
 is the scalar

Inð�Þ ¼ 1TR�1
n ð
Þ1 � An where Rnð
Þ is the n� n matrix with ði; jÞ entry 	ðsi � sj;
Þ. (So, we

can ignore the unknown �2 in comparing designs.)

Despite its innocuous form, general behavior forAn is not easy to prove except in very special cases

(see Section 7). However, we can explicitly compute the information gain in sampling location s0. We

have

Anþ1 � An ¼ ð1� 1TR�1
n ð
ÞRn0ð
ÞÞ2

1� RT
n0ð
ÞR�1

n ð
ÞRn0ð
Þ
: ð4Þ

In this expression, Rn0ð
Þ is an n� 1 vector with ith entry 	ðsi � s0;
Þ. So, the s0 that maximizes

this difference is the location that maximizes information gain. The maximization is easy to carry out

since we only have a finite number of sites and since Rn0ð
Þ changes with s0 but R
�1
n ð
Þ does not. In

fact, we suggest the creation of a GIS display in the form of a choropleth map or a contour plot to

reveal where in the region information gain is high and where it is low. (See the illustrative example in

Section 9.) Evaluation of the criterion requires knowing the covariance function, that is, requires

1In fact, this is not required but does simplify the ensuing presentation.
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estimating 
. As discussed above, this will be done using the n data points already collected. That is,

the initial data provides our starting knowledge regarding spatial structure. As we collect additional

data, we use it to revise our learning about this structure.

As noted above, An calculates the information in the sample about the mean �. There is also

information in the sample about �2 and 
. In particular, Ið�; �2; 
Þ, as a special case of Equation (3),

takes the form, for sample size n,

Inð�; �2; 
Þ ¼
An=�

2 0 0

0 n=�2 Bn=�
0 Bn=� Cn

0
@

1
A; ð5Þ

where An is as above, Bn ¼ trðR�1
n qRn=q
Þ and Cn ¼ trðR�1

n qRn=q
R�1
n qRn=q
Þ2. Hence

jInð�; �2; 
Þj has the simple form ��4AnðnCn � B2
nÞ explicitly revealing the separation in information

contributions. Suppose that our interest focuses on the information gain for both � and 
 (i.e., we

pretend that �2 is known). We can simplify (5) to

Inð�; 
Þ ¼ 1

�2

An 0

0 �2Cn

� �
: ð6Þ

Taking the trace of this matrix revises the criterion to An=�
2 þ Cn ¼

1TR�1
n ð
Þ1=�2 þ 1

2
tr R�1

n ð
ÞqRnð
Þ
q


R�1
n ð
Þ qRnð
Þ

q


	 

: ð7Þ

Evaluation of Equation (7) requires estimating �2 and 
. Again, this will be done using the n data

points already collected. Using convenient matrix identities (e.g., Harville, 1997), computational

methods for the rapid calculation of the analogue of Equation (4) are available; we omit details. In fact,

it may be of interest to compare the approximately optimal designs for just the first term in Equation

(7) or just the second term in Equation (7). (see Section 9.) However, for the remainder of this section

we omit the contribution of 
 to the information gain.

For each site we typically have available covariate information, for example, for tax parcels, the age

of the house on the parcel might be assumed to provide explanation regarding the presence of

biologically available lead at the location. Suppose in subsequent analysis, once the data is collected,

we anticipate using such information in the mean specification, say in the form of a linear regression,

�0 þ �1XðsÞ where XðsÞ is the age associated with parcel s. Then, we might seek to choose the parcels

to maximize the information about the linear function in age, that is, in �0 and �1. (Note that this is not

the same objective as choosing sites to encourage YðsÞ to be large, see Section 8 below.)

More generally, with a p� 1 vector of covariates XðsÞ, including the intercept, we obtain a p� p

information matrix (the upper left matrix in Equation (3)). Using the trace, we now obtainPp
l¼1 X

T
l R

�1
n ð
ÞXl where Xl is n� 1 with ith entry XlðsiÞ. Again we can compute the information

gain explicitly in selecting parcel s0. In fact, we obtain

Pp
l¼1ðXlðs0Þ � XT

l R
�1
n ð
ÞRn0ð
ÞÞ2

1� RT
n0ð
ÞR�1

n ð
ÞRn0ð
Þ
:

This is the recursion of Brimkulov et al. (1986).
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6.2. Comparison of the information criterion and the entropy criterion

From Section 1, the entropy criterion is phrased in terms of extent of uncertainty and is motivated by work

in pollution-monitoring network design as summarized in Zidek et al. (2000). A scalar arises in the

univariate case, the determinant of a matrix in the multivariate case. Again, with normally distributed,

dependent data both the scalar and the determinant will be parametric functions of the dependence

structure. In the design setting it is intuitively easiest to interpret entropy as uncertainty. Sites with high

entropy, given those that we have already sampled, would be desirable choices to select. That is, from

the remaining sites, we would seek to learn about those for which we are most uncertain. Hence, the

criterion computes the entropy given the current set of sites and adds next the site with the largest

conditional entropy. With the assumptions and notation above, it is straightforward to show that the

conditional entropy associated with site s0 is 1� RT
n0ð
ÞR�1

n ð
ÞRn0ð
Þ (Zidek et al., 2000). As a

conditional variance, this quantity is obviously non-negative and so, we choose s0 to maximize this.

Computation is straightforward. A choropleth map or contour plot of the values of this criterion over the

collection of parcels would provide a useful display.

It is interesting to note that the entropy criterion is the denominator of the information criterion.

This appears paradoxical since we are proposing to maximize both criteria. In fact, the square in the

numerator of the information criterion offsets the denominator to remove the paradox. We can clarify

by looking at the n ¼ 1 case. The information criterion becomes ð1� 	Þ=ð1þ 	Þ while the entropy

criterion becomes 1� 	2. Both decrease from 1 to 0 as 	 increases from 0 to 1. However, the functions

are quite different; for instance, the former is convex while the latter is concave.

The entropy criterion can be extended to accommodate pure error as well, replacing Rnð
Þ
with �2Rnð
Þ þ �2In as in Section 4. The resulting form for the criterion is �2 þ �2 � �4

Rn0ð
ÞTð�2Rnð
Þ þ �2InÞ�1Rn0ð
Þ. The criterion can also be extended to multivariate measurements

in the form of the determinant of the conditional covariance matrix associated with Yðs0Þ. With a

separable specification for the error structure, an argument similar to that for the information criterion

enables us to use the same entropy criterion as above.

Finally, the criterion would not be affected by the introduction of covariate information for each

site. The entropy measure focuses only on uncertainty arising from spatial structure. The conditional

variance is not affected by the mean specification. As Zidek et al. (2000) note, the criterion avoids

issues like parameter estimation and hypothesis testing. In our context, we would not view this as

advantageous since we want to learn about the nature of the regression relationship between the level

of the response and the proposed explanatory variables. So, for our purposes, the information criterion

emerges as preferred. In particular, it will use the available XðsÞ vectors in the determination of the

selection order.

7. SOME TECHNICAL REMARKS

Remark 1: Consider the model YðsÞ ¼ �þWðsÞ and suppose that n locations s1; . . . ; sn have already
been sampled. Expression (4) shows that the information gain at s0, �Is0ð�Þ > 0 for a new s0. In fact,

�Is0ð�Þ ! 0 when jjs0 � sijj ! 0, where siði ¼ 1; . . . ; nÞ is any of the n samples and jjs0 � sijj is the
Euclidean distance between s0 and si. So, since A1 ¼ 1, we have An > 1 and An increases in n. If

Rn ! In�n (the identity matrix), then An ! n. Is An � n? Since we showed in the previous section

that A2 � A1 ¼ ð1� 	Þ=ð1þ 	Þ, if 	 < 0;A2 > 2 and, in fact, A2 ! 1 as 	 ! �1.

Remark 2: Assuming that all the covariance parameters are given, the general behavior of

1TR�1ðs1; . . . ; snÞ1 is surprisingly difficult to investigate. Results depend upon the form of 	 and
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the nature of the asymptotics. For example, with a fixed region (so-called infill asymptotics; see Stein,

1999) and a separable covariance function that is a product of one-dimensional exponential covariance

functions, we can compute An explicitly as well as its limit which is finite. More generally, for

customary 	 that are isotropic, positive, and strictly decreasing, reaching 0 as distance reaches 1, we

can show empirically thatAn is bounded. If we allow the size of the region to grow as n grows, then the

relative rates of growth determine the behavior of An. Detailed discussion, including the foregoing

results, is presented in Xia et al. (2005).

Remark 3: If one were to think in terms of choosing a distribution to randomly sample the locations

from, intuition might suggest that the uniform distribution produces the maximum expected

information. In fact, if sampling is for s 2 D, E½1TR�1ðs1; . . . ; snÞ1jsi � unifðDÞ� will not maximize

E½1TR�1ðs1; . . . ; snÞ1jsi � f ðDÞ� for all distributions f over D. Intuitively, appropriate systematic

selection of points will provide greater information than the average under random selection. Consider

the following simple example. Suppose we sample four points ðs1; s2; s3; s4Þ uniformly on [0,1].

With the exponential correlation function Rðsi; sjÞ ¼ e�7jsi�sjj, we can obtain, by Monte Carlo

integration, Ef1TR�1ðs1; . . . ; s4Þ1jsi � unifð0; 1Þg ¼ 2:52 (Figure 1 shows the density function

for the information in this case). However, if we choose ðs1; s2; s3; s4Þ ¼ ð0; 0:33; 0:67; 1Þ,
1TR�1ðs1; . . . ; s4Þ1 ¼ 3:47. Hence, a non-degenerate distribution that is not far from this degenerate

choice will achieve a larger expectation than under uniform selection.
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Figure 1. Density of 1TR�11 given s1; . . . ; s4 � unifð0; 1Þ
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Remark 4:With infill asymptotics, if we return to Inð�; �2; 
Þ given in Equation (5), for customary

	 that are isotropic, positive and strictly decreasing, reaching 0 as distance reaches 1, we can show

empirically that Bn and Cn are unbounded. Again, see Xia et al. (2005).

Remark 5: In considering say, Inð�; �2; 
Þ, the trace cumulates what we would define as the

conditional information, for example, the information in the sample about 
 given � and �2 are known.

We could also calculate unconditional information. We can show that the sum of the reciprocals of the

diagonal elements of I�1
n ð�; �2; 
Þ cumulates this unconditional information. Furthermore, the

asymptotic behavior of unconditional information need not agree with that of conditional information.

Remark 6:We hope that it is clear that the sequential approach need not produce the optimal choice

of m points. The useful analogy here is to variable selection in multivariate linear regression. A

forward stepwise procedure is not guaranteed to produce the subset of variables of a fixed size which

maximizes R2.

Remark 7: As an example to illustrate a case where sequential design will be worse than block

design, suppose we have s1 at the origin. We want to select three additional points to learn about the

mean from s2; . . . ; s5 as shown in Figure 2. The block design will select ðs1; s4; s2; s5Þ while the
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Figure 2. Sequential selection versus block selection
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sequential design will select ðs1; s4; s3; s2Þ. The corresponding sequence of information values is (1,

1.915, 2.728, 3.539) and (1, 1.915, 2.736, 3.521), respectively; the four points selected by the block

design produce greater information than those selected by the sequential design.

Remark 8: We conclude with an illustrative comparison among the sequential scheme, the block

scheme, the stochastic search scheme (b ¼ 500) and the refined stochastic search scheme (again,

b ¼ 500). In Figure 3 (which arises from the simulation illustration in Section 9), we plot the

information growth for the intercept. The information for the intercept is bounded as noted in Remark

1 and the upper bound is given. The sequential design scheme is clearly the best, as it will be generally

except for pathological examples such as in Remark 7. With 40 sites already sampled and 960 that

could still potentially be sampled, more than 95 per cent of the upper bound is achieved with only 20

additional observations. For the block scheme and the modified stochastic search schemes roughly 70

additional observations are needed to do as well. The inferior performance of the simple stochastic

search scheme is evident. We also plotted (Figure 4) the information growth for Ið
Þ, calculated
through the lower right entry in Equation (3). Note the striking difference in the information scales

between Figures 3 and 4. Also, we see that, with �2 fixed (known), information growth for 
 is not

bounded. See, for example, Xia et al. (2005) in this regard.
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Figure 3. Information (Ið�0Þ) growth in sample size for the four sampling schemes
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8. MODIFIED UTILITY SPATIAL DESIGNS

The goal here is to propose the use of overlays of either (estimated) mean response or covariate data

layers to achieve specific objectives, for example, to separate essentially equivalent locations under the

foregoing criteria or to modify utility for point selection resulting in revised approximate optimization

for the spatial sampling design.

For instance, the goal may be to learn about the regression relationship but this does not imply

selection of sites where the response is expected to be high, for example, high levels of biologically

available lead or of arsenic contamination. One way to achieve this is a model-based strategy,

obtaining the estimated spatial surface based upon the data collected thus far, that is, based upon

Yðs1Þ; Yðs2Þ; . . . ; YðsnÞ. Overlay of this surface on the selection surface will reveal parcels where both
layers achieve high values in order to determine selection. Alternatively, we could multiply the

surfaces to upweight/downweight the selection surface. One might also work not with the fitted model

layer but, instead, a different data layer, perhaps external to those used in the model fitting. Such layers

might reflect established geographic gradients with regard to say, the contaminant or distance from a

site that is a known source for high contaminant levels.

This strategy would also address the matter of locations having essentially equivalent values under

the criterion. They can be distinguished by using the second weighting layer, yielding a weighted
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criterion. For instance, one could upweight parcels that are expected to exhibit high levels of the

contaminant being sampled.

A somewhat different objective that could be used to distinguish parcels which are essentially

equivalent under the information criterion would be to work with demographic data layers. In this

case, the second objective would be to oversample parcels with certain demographic features, for

example, in low socio-economic status areas or high crime rate areas. A spatial surface reflecting such

a layer would be created. Again, overlaying or multiplication provides upweighting or downweighting

of the selection surface. Ultimately, the issue is one of utility for the data collection. If we seek to learn

not only about the exposure surface but also to achieve certain expected features in our samples, then

we need to specify a utility function that reflects this objective.

9. COMPUTATIONAL ISSUES AND A SIMULATION ILLUSTRATION

In providing a simulation illustration, we focus on sequential design and block design to select an

additional collection ofm parcels from N � n parcels given n have already been selected. We adopt the

model YðsÞ ¼ XðsÞT� þWðsÞ þ �ðsÞ, and work with Iðb; hÞ as in Equation (3). For the sequential

design we do not update the parameter estimates after each new location is selected. We only use the

parameter estimation based upon the original n samples.
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We generalize the trace of Ið�; �Þ to define Ið�Þ ¼Pp
i¼1 !iIð�iÞ for vector b of length p,

Ið�Þ ¼Pq
j¼1 �jIð�jÞ for vector h of length q and finally, the combined information as Iðb; hÞ ¼Pp

i¼1 !iIð�iÞ þ
Pq

j¼1 �jIð�jÞ. The weights allow us to rescale the components of the trace to reflect the

fact that the information is affected by scale. For example, the information value would change if we

convert distance from, say, kilometers to miles. Also the scale of information values for mean structure

parameters b and for dependence structure parameters h can be very different (recall Figures 3 and 4).

However, here we do not pursue standardizations (choices of v’s and w’s) since, as in the previous

section, they too reflect utility for the design. Instead, in the illustration below, we show approximately

optimal designs for b, for h and for utility-weighted versions of these following Section 8.

Furthermore, motivated by Figure 2, we work only with the sequential sampling scheme.

In particular, we turn to a simulation example where we conduct the spatial design based upon a

grid of 40� 25 parcels as Figure 5 shows.

We first sampled 40 of these parcels according to, for example, space-filling design at locations

indicated by þ on the grid. We generated a random realization of a Gaussian process of the form

YðsÞ ¼ �0 þ �1X1ðsÞ þ �2X2ðsÞ þWðsÞ, ignoring the pure error term �ðsÞ, for convenience. X1ðsÞ
denotes the distance of location s from a pollution source located at ð10:5; 7:5Þwhile X2ðsÞ denotes the
distance of s from a different pollution source located at ð18:5; 20:5Þ (these are indicated by @ on the

grid). The true �0 ¼ 2, the true �1 ¼ 0:5, and the true �2 ¼ 1. The spatial variability �2 is set to 1. We

use the exponential covariance function with decay parameter 
 ¼ 0:2, resulting in a spatial range of

31.75 per cent of the maximum distance in the region. Figure 6 is a three-dimensional perspective plot

of the true mean surface.
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Figure 7 shows 100 selected locations(indicated by ‘‘	’’) based on the information gain of �0.

Though the selection sequence is not numbered (the figure becomes too cluttered if we do), adding

‘less dependent’, that is, ‘most isolated’ locations will most increase information. Notice also the

striking edge effects which are inherent in sampling from a bounded region.

Figure 8 provides 100 selected points based on the information gain of �0; �1; �2. It can be seen

that, in addition to isolated locations, we also choose locations that are clustered around the two

pollution sources. In this case, the information gain by adding a particular point depends on the

distance from that point to the pollution sources as well as the dependence between that point and all

the existing samples. Again, edge effects are strong.

Figure 9 shows the design that results from the criterion which attempts to maximize Ið
Þ, the gain
in information about the spatial dependence. The choice of points is dramatically different from that

for Ið�0Þ. To learn about decay in spatial association, we need points near to each other. Edge effects

are not an issue here.

Figures 10 and 11 provide the analogues of Figures 7 and 8 using the design points based upon a

weighted criterion, in particular, weighted by the estimated mean at each location. Note that in the

present case, Figure 10 changes dramatically from Figure 7 while Figure 11 is nearly the same as

Figure 8.
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10. A PROSPECTIVE REAL APPLICATION

In 1984, a Union Carbide plant in Bhopal, India released methyl isocyanate into the air at levels high

enough to kill several thousand people in the immediate surrounding area. Not long after, Union

Carbide’s sister plant in South Charleston, West Virginia also experienced a significant release of

acetone and mesityl oxide. Concerned for their safety, both industrial workers and local communities

called for freely available information on the chemicals being used in and released from industrial

facilities. In response to strong public demand, in 1986, the United States enacted the Emergency

Planning and Community Right to Know Act.

Among other things, under Section 313 the Act established the Toxics Releases Inventory (TRI). In

its original form, TRI required all businesses in Standard Industrial Classification (SIC) codes 20–39

that employed ten or more employees and released into the air, water, or ground either 10 000 pounds

or more of any one of the 350 chemicals on the TRI list or 25 000 pounds or more of any combination

of the 350 chemicals to report this information to the USEPA. SIC codes 20–39 cover the following

industries: food, tobacco, textiles, apparel, lumber and wood, furniture, paper, printing and publishing,

chemical, petroleum and coal, rubber and plastics, leathers, stone clay and glass, primary metals,

machinery, electrical and electronic equipment, transportation equipment, instruments, and miscella-

neous manufacturing. The TRI has subsequently been expanded to include metal mining, coal mining,

coal- and oil-fired electric utilities, hazardous waste treatment and disposal facilities, chemicals and
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allied products wholesale distributors, petroleum bulk plants and terminals and solvent recovery

services, reflecting a total of 667 chemicals. In addition, the USEPA has recently reduced the reporting

threshold for several chemicals that are considered either persistent or especially toxic, including

hexachlorobenzene, mercury, and lead.

Reconsideration of the TRI reporting requirements includes questions regarding: (1) whether

smaller facilities (fewer than 10 employees or lower chemical use levels) in TRI-reporting SIC codes

should be required to report their emissions; (2) whether additional SIC codes should be required to

report; (3) whether additional chemicals should be added to the TRI list; (4) whether reporting

thresholds should be lowered on particular compounds (as was done for hexachlorobenzene, mercury,

and lead; (5) whether facilities should be required to report both use and emissions; and (6) whether

facilities that previously reported, but do not report currently, should be required to provide an

explanation for this change in status. All of these policy questions are substantially hampered by the

lack of systematic data on ambient levels of air toxics. Given the paucity of existing data and the cost

of collecting new data, an optimized method for sampling design is essential. Take, for example,

question (1) above regarding whether smaller facilities should be required to report their emissions.

Previous research where emissions are imputed to smaller facilities indicates that including smaller

facilities has a substantial impact on the spatial distribution of modeled ambient air concentrations of

contaminants (Dolinoy and Miranda, 2004). This work, however, necessarily relies on model-based

estimates of ambient levels that result from dispersion models. Alternatively, the facilities that already
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report to TRI would be analogous to the two point sources delineated in the simulation presented here.

The smaller facilities represent known point sources with unknown emission levels. Since the

emissions from the smaller facilities are unknown, they are not available for considering the question

of whether these smaller facilities should be required to report. Determining how important the smaller

facilities are to ambient concentrations can be much more efficiently accomplished through

optimization of sampling design.

The optimized sampling design approach described can incorporate multiple sources of emissions

and multiple chemicals emitted. The sampling design can also be shaped to specifically assess

exposures to specific sub-populations whose geographic distribution can be characterized. Thus the

approach holds great potential for helping scientists, agencies, and communities understand the

distribution of TRI chemicals released into the environment.

11. DISCUSSION AND EXTENSIONS

We have considered approximately optimal environmental exposure sampling design for the setting

where we expect intensive one-time sampling rather than sparse continuous monitoring. We have

adopted information-based performance criteria and suggested a sequential implementation. We have

shown that such a strategy is straightforward to implement with computational demand that is not
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excessive. We have also suggested utility-weighting as a mechanism for oversampling to achieve

specific objectives.

We have developed the approaches in the setting of data from a Gaussian process. However, we can

work with non-Gaussian models for the data. In fact, we can also handle discrete data, for example,

binary or count data by representing our model in a hierarchical fashion with the process specification

moved to the second stage. (See, e.g., Diggle et al., 1998 or Banerjee et al., 2004). In these cases we

merely replace the Gaussian likelihood with a different first stage likelihood before calculating the

information.

A longer view of the exposure data collection might introduce a temporal component in the sense

that we may seek to revisit locations that have been previously sampled at a future point in time. If we

introduce suitable dependence into our modeling, we can extend our information-based sampling

approaches to accommodate this setting as well.

Lastly, the foregoing development is described in terms of the spatial surface of levels for a single

contaminant. A broader experiment may consider multiple contaminants. If so, we can optimize

location selection when levels of several contaminants are sampled at a given location.2 In particular,
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2As a variant, we may have multiple types of sampling, for example, ambient sampling, ground deposition sampling, or organism
sampling. Similar to the above, we can optimize sampling when multiple types of sampling will be carried out at a location.
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suppose at each parcel we measure levels of say r contaminants. Now, we replace YðsiÞ with an r � 1

vector YðsiÞ. The resulting information gain now depends on both the spatial dependence across

locations as well as the dependence between the measurements within each location. A simplified

form arises under a separable specification for this error structure (see, e.g., Banerjee et al., 2004 and

references therein). The resulting form is the above information multiplied by the within location

covariance matrix. Since the latter is free of n, we can use the same criteria as above in this case.
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